Research Programs, Directions & Priorities

Georgia, Alabama, Florida

Research Directions & Priorities

- Professional Expertise and Infrastructure
- Experiment Station Dollars
- Grant Dollars
 - Competitive
 - Commercial
 - Commodity
 - National Peanut Board
 - State Boards
 - Peanut Sheller's
 - Etc

Research Directions

- Professional Expertise and Infrastructure
- Experiment Station Dollars primary funding source for most programs (key issues)
 - -- fewer dollars and/or less buying power
 - -- shrinking numbers of scientist and professional staff
 - multiple crop responsibilities for most production faculty
 - -- changes can take years
 - -- long range planning processes are critical

Specific Research Priorities

Established by researchers – driven by grants

Competitive Commercial Commodity

Commodity Funds

- Cotton Incorporated
- American Soybean Association
- National Corn Growers
- National Peanut Board
- State Boards

National Peanut Board – 2014 Projects

32 Projects

- 8 two or more states
- 14 two or more disciplines
- 20 two or more principle investigators
- 1 Only one w/o multiple PI or Cooperators
 - -- large number of scientist working together
 - -- not much duplication
 - -- coordinated effort

Principle Investigators and Cooperators -59

Discipline	<u>P.I.s</u>	Coop.	<u>Total</u>
Basic Science	10	4	14
Plant Breeding	3	2	5
Pathology	9	1	10
Entomology	5		5
Weed Science	7		7
Agronomy	7		7
Economics	2	6	8
Meteorology	1		1
Nematology		1	1
Seed Technology		1	1
Total	44	15	59

Researchers not funded by NPB

- Engineers ----- 5
- Basic Science --- 3
- Food Science --- 3
- Weed Science -- 2
- Agronomy ----- 1
- Total ----- 14

Affiliation

Affiliation	Pl's	Coop.	Total	
UGA	18	5	23	
UF	9	1	10	
AU	8	1	10	
ARS	8	5	13	
Other	3	0	3	

Primary Research Emphasis 32 NPB Projects

•	Genetics & Biotechnology 1	2
•	Production 1	13
•	Economics	2
•	Web based programs	2
•	Seed treatment	1
•	N fixation	1

Genetics & Biotech – 12 Projects

- Molecular Markers ----- 4
- Cultivar development ----- 2
- Screening for Herbicide Tolerance ----- 1
- Screening for Genetic Resistance ----- 1
- Drought Tolerant Trait Identification -- 1
- Genome sequencing leaf spot ----- 1
- Resistant Traits from Wild Peanuts ---- 1
- Functions of Peanut Genes ------ 1

Molecular Markers – 4 Projects

- White mold
- Leaf Spot
- TSWV
- Aflatoxin
- Root Knot

Screening for Genetic Resistance

(all currently grown commercial peanuts plus 50 genotypes)

Root Knot Leaf Spot TSWV Soil Borne

Economics – 2 primary projects

- Crop Competiveness
- Analysis of Production Projects

 (1 primary and 4 as Co-Pi or Cooperator)

Production Related Projects - 13

Primary Focus Nu	<u>ımber</u>
Diseases	3
Insects	3
Weeds	3
Cropping systems	3
Nutrients	1

Research Targets (production)

<u>Target</u> <u>Proj</u>	ects
TSWV	4
Thrips	3
Leaf spot	3
White mold	3
Drought	3
Burrow bugs	2
Nutsedge	2
P. Amaranth	2

Primary Research Targets (production)

<u>Target</u>	<u>Proje</u>	ects
TCAH		1
Root knot		1
Rust		1
CBR		1
Aflatoxin		1
Yield		all

Research Variables (mostly interactions)

<u>Variables</u>	<u>Projects</u>
Chemicals	- 8
Cultivars	- 6
Tillage	- 5
Row Pattern	- 4
Irrigation	4
Planting dates	4
Seeding rates	3
Cover crops	2
Fertilizer	2

Plant Diseases (3 projects)

1. Three States, 5 Pl's – effects of new cultivars, tillage, row pattern, seeding rates, chemicals on

thrips, TSWV, leaf spot, rust, white mold and

CBR.

Insects – 3 Projects

- 1. TCAH, Burrow Bugs, IPM 4 Pl's, 2 states
 - a. Economic Threshold for TCAH
 - b. Tools (light traps) for monitoring burrow bugs
 - c. Cultivar response to IPM

(no treatment, threshold, pest elimination)

Insects

- 2. Thrips and TSWV GA, three Pl's
 - a. Interacting effects of seeding rates, tillage, and row pattern

b. Insecticide interaction with culitvars

c. Transcriptomics

Insecticides

- 3. Relationships between burrow bugs and aflatoxin AL
 - tillage and irrigation variables

Weeds – Three Projects

- Palmer amaranth timing of burn down herbicides - FL
- Nutsedge Cadre rates on nutsedge control and nut production – GA
- 3. Tillage Interactions with herbicide systems GA & AL

Cropping Systems – Three Projects

- 1. Three states, 7 P.I.'s, 5 disciplines
 - a. Crop rotations including vegetables and years without peanuts
 - b. Cover crops Specie, planting date, & fertilization
 - New cultivar response to agronomic practices (planting dates, seeding rate, row pattern, irrigation, & tillage)

Cropping Systems

- Row patterns across tillage and cover crops -(GA & AL)
- 3. New cultivars planting dates and irrigation

Nutrient Management – One project, 2 Parts (2 states, 5 P.I.'s)

1. Calcium

- Sources (gypsum, Ca-chloride, & Ca-thiosulfate)
- -Application methods (pivot & foliar)
- -Timing of application
- -Irrigation

2. Foliar applications of Mn, B, Ni

Seed Treatments – 1 project

Interacting effects of

- treatments, seed maturity & Genotypes

On – Emergence, plant stands, yields, and quality

Web Based Programs

Demonstration of web based monitoring and controls

2. Web based tools for predicting irrigation, disease, and maturity (3 states, 9 P.I.'s)

